

www.elsevier.nl/locate/jorganchem

Journal of Organometallic Chemistry 614-615 (2000) 262-268

Gas-phase reactions of *nido*-1-methylpentaborane with propyne and 2-pentyne. Formation of B-alkyl *nido* and *closo* carbaboranes

Mark A. Fox ^a, Robert Greatrex ^{a,*}, Matthias Hofmann ^b, Paul von Ragué Schleyer ^c

^a School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

^b Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany ^c Computational Chemistry Annex, University of Georgia, Athens, GA 30605-2525, USA

Received 21 May 2000

Dedicated to Professor Sheldon G. Shore on the occasion of his 70th birthday in appreciation of his outstanding contributions to the areas of boron and transition metal cluster chemistry.

Abstract

The gas-phase reaction between $1-\text{MeB}_5\text{H}_8$ and propyne at 230°C yields methyl derivatives of *nido*-2,3-dicarbahexaboranes and *closo*-2,4-dicarbaheptaboranes. The reaction between $1-\text{MeB}_5\text{H}_8$ and 2-pentyne at 190°C gives analogous alkyl *nido*-carbaboranes (but not *closo*-carbaboranes). Detailed boron and proton NMR data on these products in conjunction with ab initio/GIAO/NMR computations show that the dicarbaboranes 2,4-Me₂-2,3-C₂B₄H₆ (**3**) and 2-Et-3,4-Me₂-2,3-C₂B₄H₅ (**12**) are produced in the gas-phase reactions of B₄H₁₀ with ethyne and propyne, respectively. Early work on these two compounds identified them incorrectly as the first tricarbaboranes 2,3-Me₂-2,3,4-C₃B₃H₅ and 2-Et-3,4-Me₂-2,3,4-C₃B₃H₄, respectively. © 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: 1-Methylpentaborane; nido-Dicarbahexaborane clusters; closo-Dicarbaheptaboranes; GIAO structural/NMR calculations

1. Introduction

Over three decades ago, the reaction between 1-MeB₅H₈ and excess HC=CH at 250°C was reported to give four major carbaborane products: 2,3-C₂B₄H₈ and the three B-methyl derivatives, 1-Me-, 4-Me- and 5-Me-2,3-C₂B₄H₇ [1] (Fig. 1). Analogous products were obtained in the reaction involving MeC=CMe in place of HC=CH. On this basis the reaction between 1-MeB₅H₈ and MeC=CH would be expected to give 2-Me-2,3-C₂B₄H₇ (1) and all four possible dimethyl derivatives: 1,2-Me₂- (2), 2,4-Me₂- (3), 2,5-Me₂- (4) and 2,6-Me₂-2,3-C₂B₄H₆ (5) (Fig. 2). Our interest in exploring this reaction was stimulated by our recent discovery that one of the main volatile products of the gas-phase reaction between B₄H₁₀ and HC = CH at 50°C was a dimethyl-2,3-dicarbahexaborane derivative [2,3], and not one of the first tricarbahexaboranes as had earlier been claimed [4-7].

On the basis of the ¹¹B- and ¹H-NMR data alone it was not possible to establish conclusively which of the two isomers was produced in the B_4H_{10} /ethyne reaction, 2,4-Me₂-2,3-C₂B₄H₆ (3) or 2,6-Me₂-2,3-C₂B₄H₆ (5), but ¹H{¹¹B selective}-¹H subtraction spectra suggested that it was the former isomer [2,3]. Consistent with this assignment, the spectra also showed unusual long-range B-H couplings between the basal boron and the neighbouring methyl protons (i.e. *B*6-C2-*CH*₃ in (3)), similar to the long-range couplings observed in 1-MeB₅H₈ [8]. However, definitive confirmation was provided by use of the combined ab initio/GIAO/NMR method. The details of this study are now described in full.

The combined ab initio/IGLO or GIAO/NMR method has developed into a reliable technique for structure determination [9]. IGLO and GIAO NMR chemical shift calculations have been carried out on many known boranes and carbaboranes and have been

^{*} Corresponding author. Tel.: +44-0113-2336413; fax: +44-0113-2436565.

E-mail address: r.greatrex@chemistry.leeds.ac.uk (R. Greatrex).

shown to give very good agreement with experimental ¹¹B chemical shifts [10]. However, it seemed unlikely that the method would be sufficiently precise to allow a definitive choice to be made between structures so closely related as the isomers **3** and **5**, solely on the basis of an isolated set of experimental chemical shifts for the compound in question. It was also anticipated that the margins for error would probably be increased by the presence of freely rotating alkyl groups in the compound.

To resolve this particular problem it was necessary to obtain spectra of both isomers so that their relative experimental shifts could be compared with the calculated values. This paper reports the synthesis of these closely related products, 3 and 5, by the reaction between 1-MeB₅H₈ and MeC=CH referred to earlier. We describe how the powerful ab initio/GIAO/NMR method has enabled their NMR spectra to be assigned and the compounds themselves to be identified, despite the fact that three of them are too similar in volatility to be separated from one another by low-temperature fractionation. We also report the unexpected formation of the *closo*-carbaheptaboranes, $B_{2}-Me_{2}-2, 4-C_{2}B_{5}H_{5}$ (6-9) (Fig. 2), from the same reaction and, in the light of our findings, discuss the products from the reported [6] thermolysis of 2,4-Me₂-2,3-C₂B₄H₆ (3) (thought at the time to be $2,3-Me_2-2,3,4-C_3B_3H_5$).

Boron and proton spectra on a product from the gas-phase reaction of B_4H_{10} and MeC=CH, originally thought to be 2-Et-3,4-Me₂-2,3,4-C₃B₃H₄ [4–7], suggested that it might be either 2-Et-3,4-Me₂-2,3-C₂B₄H₅ (**12**) or the closely related isomer 2-Et-3,6-Me₂-2,3-C₂B₄H₅ (**14**) [2]. The ¹H{¹¹B selective}-¹H subtraction spectra showed long-range B-H couplings between the basal boron and the neighbouring methyl protons (i.e. *B*4-C3-CH₃ couplings), which tentatively identified the product as 2-Et-3,4-Me₂-2,3-C₂B₄H₅ (**12**) [2]. The synthesis and characterisation of the *nido*-carbahexabo-

ranes 2-Et-3-Me-2,3-C₂B₄H₆ (10), 2-Et-1,3-Me₂- (11), 2-Et-3,4-Me₂- (12), 2-Et-3,5-Me₂- (13) and 2-Et-3,6-Me₂-2,3-C₂B₄H₅ (14) from the reaction of EtC=CMe and 1-MeB₅H₈ are also described here (Fig. 3).

2. Experimental

Standard high-vacuum systems fitted with greaseless O-ring taps and spherical joints [J. Young (Scientific glassware) Ltd.] were used throughout. Propyne (Cambrian Gases) and 2-pentyne (Aldrich) were obtained commercially and 1-methylpentaborane, $1-CH_3B_5H_8$, was prepared from B_5H_9 , MeCl and AlCl₃ using a known procedure [11]. The high-field ¹¹B- and ¹H-NMR spectra were obtained on a Bruker AM-400 NMR instrument. The ¹H{¹¹B selective} experiments were performed by established methods [12].

2.1. Gas-phase reaction of MeB_5H_8 and $MeC \equiv CH$; carbaboranes 1-9

A mixture of 1-MeB₅H₈ (3 mmol) and MeC=CH (30 mmol) was sealed in a 500 ml flask and heated to 190°C for 8 h and then to 230°C for 2 h. After the mixture was cooled, the volatiles were collected at $-196^{\circ}C$ and fractionated on а high-vacuum-low-temperature column [13]. The progress of the reaction was followed by bleeding the species leaving the column into an MS30 mass spectrometer via a 'Veridia' capillary of length 250 mm and internal diameter 0.1 mm [Jencons (Scientific) Ltd.]. In addition to the starting material, MeC=CH, which left the column at -110° C, the following products were identified by their cut-offs in the mass spectra and by their ¹¹B- and ¹H-NMR spectra (column temperature and estimated yield based on 1-MeB₅H₈ in parentheses): 2-MeB₅H₈ (formed from the known rearrangement of 1-MeB₅H₈ at 200°C,

Fig. 1. The four major *nido* carbaborane products known to be produced in the reaction between 1-MeB₅H₈ and excess HC=CH at 250°C.

Fig. 2. The five *nido* products 1-5 expected to be formed in the reaction between $1-\text{MeB}_{5}H_{8}$ and MeC=CH, plus the four *closo* dimethyl derivatives 6-9 observed unexpectedly.

- 64°C, 4%), the *nido* carbaboranes, 1 (-87°C, 7%), 2 (-58°C, 6%), a 0.9:1:0.8 mixture of 3, 4 and 5 (-49°C, 12%), and the *closo* carbaboranes, 2,3-Me₂-2,4-C₂B₅H₅ (7) (-52°C, 1%) and a mixture of *closo*-1,2-, 2,5- and 2,6-Me₂-2,4-C₂B₅H₅ (compounds 6, 8 and 9, respectively) (-47°C, 0.1%). In addition, minor amounts of volatile species having cut-offs in their mass spectra at m/z 118, and mass spectral patterns characteristic of *nido*-CB₅H₉ derivatives were observed to leave the low-temperature column at -40°C.

2.2. Gas-phase reaction of MeB_5H_8 and $EtC \equiv CMe$; carbaboranes **10–14**

A mixture of 1-MeB₅H₈ (3 mmol) and EtC=CMe (30 mmol) was sealed in a 500 ml flask and heated to 190°C for 18 h. After the mixture was cooled, the volatiles were collected and fractionated as described above to give EtC=CMe (-80° C), 1-MeB₅H₈ (-64° C), the *nido* carbaborane 10 (-45° C, 10%), and a mixture comprising 11, 12, 13 and 14 in the approximate ratio

Fig. 3. The range of *nido*-carbahexaboranes from the reaction of EtC=CMe and 1-MeB₅H₈ at 190°C.

1.8:1:1.5:1 (-37° C, 9%). A mixture of derivatives of 2-CB₅H₉ (-10° C, 0.5%) with mass cut-offs of m/z 146, and various alkyldiboranes was also obtained. No 2-MeB₅H₈ or volatile *closo*-C₂B₅H₇ derivatives were observed.

3. Computational details

The geometries of the structures shown in Figs. 1–4 were optimised at the MP2(fc)/6-31G* level (no imaginary frequencies were found at the HF/6-31G* level for all geometries) and for the geometries of carbaboranes 1–5 ¹¹B-NMR chemical shifts were computed at the GIAO-B3LYP/6-311G* level with the Gaussian 94 package [14]. The ¹¹B chemical shifts were referenced to B₂H₆, and δ (B₂H₆) = 16.6 [15] was used for conversion to the experimental scale (i.e. relative to BF₃·OEt₂). Cartesian coordinates and absolute energies from the geometry optimisations at the //RMP2(fc)/6-31G* level of theory for structures shown in Figs. 1–4 are available as supplementary data.

4. Results and discussion

4.1. Carbaboranes from the reaction between MeC = CHand $1 - MeB_5H_8$

All five expected *nido*-carbaboranes, comprising 2-Me–2,3-C₂B₄H₇ (1) [16] with a cut-off in the mass spectrum at m/z 90, and the four dimethyl derivatives of 2,3-C₂B₄H₈ (1,2-, 2,4-, 2,5- and 2,6-Me₂-2,3-C₂B₄H₆ (2-5), respectively), each with cut-offs in the mass spectra at m/z 104, were formed from the reaction between 1-MeB₅H₈ and MeC=CH at 230°C. Compounds 3, 4 and 5 were produced in a 0.9:1.0:0.8 ratio, but were not successfully separated by our low-temperature fractionation technique.

The ¹¹B signals in the high-field region were characteristic of apical boron atoms in *nido*-dicarbahexaboranes and were readily assigned to B1 [17]. The assignments of the resonances from boron atoms B5 in the ¹¹B{¹H} spectra of these compounds were also relatively straightforward because these signals were broadened compared with those of B4 and B6 [18,19]. To assign the resonances of boron atoms B4 and B6, and to confirm the other assignments, an ab initio/ GIAO study was carried out on compounds 1-5. ¹¹B-NMR chemical shifts for the carbaboranes 1-5, calculated at the GIAO-B3LYP/6-311G*//MP2(fc)/6-31G* level, established the correct assignments of boron atoms B4 and B6, as indicated in Table 1. These results confirm that 2,4-Me₂-2,3-C₂B₄H₆ (3) is indeed

Fig. 4. Thermolysis at 250°C of the carbahexaborane derivative nido -2,4-Me_2-2,3-C_2B_4H_6 (3) is shown to give the closo heptaborane derivative 2,3-Me_2-2,4-C_2B_5H_5 (7).

Table 1

 $2,6-Me_2-2,3-C_2B_4H_6$ (5)

	B1	B4	B5	B6
$2-Me-2, 3-C_2B_4H_7$ (1)	-49.8 (-54.6)	-2.6 (-4.6)	0.1 (-2.9)	-3.1 (-5.6)
$1,2-Me_2-2,3-C_2B_4H_6$ (2)	-41.2(-45.9)	-1.9(-3.4)	0.5(-1.9)	-2.4(-5.6)
$2,4-Me_2-2,3-C_2B_4H_6$ (3)	-48.8(-53.4)	7.7 (6.4)	-1.7(-4.1)	-4.6(-6.7)
$2,5-Me_2-2,3-C_2B_4H_6$ (4)	-48.8(-53.7)	-3.3(-4.6)	13.0 (10.6)	-3.3(-5.4)

-4.6(-6.5)

Experimental and calculated (GIAO-B3LYP/6-311G*//MP2(fc)/6-31G* in italics) ¹¹B-NMR chemical shifts for nido-carboranes 1-5

produced in the gas-phase reaction of B_4H_{10} with ethyne.

-48.8(-53.6)

The new closo-carbaheptaborane, 2,3-Me₂-2,4- $C_2B_5H_5$ (7), identified by NMR spectroscopy, is by far the most abundant of the four isomeric *closo*-carbaheptaboranes B,2-Me₂-2,4-C₂B₅H₅ (6–9) (all having cutoffs at m/z 114) produced from the reaction in minor amounts. They are presumed to arise from the thermolysis of *nido*-B,2-Me₂-2,3-C₂B₄H₆ derivatives. Interestingly closo-2-Me-2,4-C₂B₅H₆ (which would perhaps be expected to be formed from 1) is not observed. In view of the fact that the attempted 'direct' preparations of $closo-C_2B_5H_7$ and 2,4-Me₂-2,4-C₂B₅H₅ from B₅H₉ with HC=CH and MeC=CMe at 300 and 285°C, respectively, were also unsuccessful [16], it would therefore appear that the methyl group at boron facilitates the formation of closo-C₂B₅H₇ derivatives.

4.2. Comments on earlier work

Thermolysis at 250°C of 2,4-Me₂-2,3-C₂B₄H₆ (3), thought at the time to be 2,3-Me₂-2,3,4-C₃B₃H₅, was reported to give a *closo*-B,2-Me₂-2,4-C₂B₅H₅ and a *nido*-C,B-Me₂-2,3,4-C₃B₃H₅ [6]. We now believe that the *closo* compound is 2,3-Me₂-2,4-C₂B₅H₅ (7) and that the *nido* product is, in fact, 2,5-Me₂-2,3-C₂B₄H₆ (4), present initially as an impurity. This conclusion is based on our earlier observation that 4 accompanies 3 as a minor isomer in the products from the reaction of B₄H₁₀ and HC=CH at 50°C [3].

Thus, it would appear that **7** is formed in the reaction of 1-MeB₅H₈ and MeC=CH at 230°C from the decomposition of **3**, and that this reaction involves the direct preparation of *closo*-C₂B₅H₇ derivatives from alkynes and pentaboranes via a *nido*-C₂B₄H₈ derivative (Fig. 4). The first example of such a 'direct' preparation was achieved by a high-energy electric discharge of ethyne and pentaborane [20]. The preferred formation of **7** from **3** may also hold clues about the mechanism involved in the thermal conversion of 2,3-C₂B₄H₈ to 2,4-C₂B₅H₇ [21].

When 2,4-Me₂-2,3-C₂B₄H₆ (**3**) was thermolysed at the higher temperature of 300°C for 7 days it was reported to give two *closo*-Me₂-2,4-C₂B₅H₅ derivatives as volatile products [6]. At this same temperature, rearrangement

of the *closo*-carbaheptaborane 3-Me-2,4-C₂B₅H₆ is known to produce an equilibrated mixture of 3-, 1- and 5-Me-2,4-C₂B₅H₆ in an approximate ratio of 5:5:3 [22]. On the reasonable assumption that the C(2)–Me linkage remains intact, we might therefore expect 2,3-Me₂-2,4-C₂B₅H₅ (7) to rearrange at 300°C to an equilibrated mixture of the four isomers, 2,3- **6**, 1,2- **7**, 2,5- **8** and 2,6- **9**, in a ratio of 5.0:5.0:1.5:1.5. It follows that the two *closo* derivatives reported from the thermolysis of 2,4-Me₂-2,3-C₂B₄H₆ (**3**) at 300°C are most probably **6** and **7**.

-1.7(-4.0)

6.3 (4.4)

4.3. Carbaboranes from the reaction between EtC=CMe and MeB_5H_8 at 190°C

The gas-phase reaction of EtC=CMe and $1-\text{MeB}_5\text{H}_8$ at 190°C gave 2-Et-3-Me-2,3-C₂B₄H₆ (10) as the major volatile product, together with minor amounts of the *nido*-dicarbahexaboranes 11, 12, 13 and 14. These were identified by various boron and proton NMR experiments, including ¹H{¹¹B selective}-¹H subtraction and ¹H-¹H{¹¹B} COSY spectroscopy, and shown to be present in the mixture in a 1.8:1:1.5:1 ratio (Table 2). The spectroscopic data also confirm that the product from the gas-phase reaction of B₄H₁₀ with propyne, originally thought to be 2-Et-3,4-Me₂-2,3,4-C₃B₃H₄, is in fact 2-Et-3,4-Me₂-2,3-C₂B₄H₅ (12); data for the latter have previously been reported [16].

The gas-phase reaction of B_5H_9 and MeC=CMe was reported to give substantial yields of the *nido*-monocarbahexaboranes 3-Et-2-Me-2-CB₅H₇ and 4-Et-2-Me-2-CB₅H₇, as well as the major product, 2,3-Me₂-2,3-C₂B₄H₆ [23]. We therefore assume that the minor lowvolatile product from the MeB₅H₈/EtC=CMe reaction, with mass cut off of m/z 146 (C₆B₅H₁₉), is a mixture of trialkyl monocarbahexaboranes.

4.4. Proton NMR assignments in reported 4-alkyl-nido-dicarbahexaboranes

This study has enabled the proton NMR data reported for 4-(PhCH₂)-2,3-Et₂-2,3-C₂B₄H₅ and 2,3,4-(PhCH₂)₃-2,3-C₂B₄H₅, generated from the reaction between PhCH₂Br with the anions [2,3-Et₂-2,3-C₂B₄H₅]

Table 2

¹¹B- and ¹H-NMR data for new carbaboranes reported in this study ^a

	¹¹ B ^b	¹ H °
2	0.5 [d, 1 B, J_{BH_t} 165, B5], -1.9 [dd, 1 B, J_{BH_t} 152, $J_{BH_{\mu}}$ 50, B4], -2.4 [dd,1 B, J_{BH_t} 155, $J_{BH_{\mu}}$ 49, B6], -41.2 [s, 1 B, B1]	6.10 [s, 1 H, C3H], 3.64 [s, 1 H, B5H], 3.31 [s, 1H, B4H, 3.25 [s 1 H, B6H], 2.18 [s, 3 H, C2CH ₃], -0.58 [s, 3 H, B1CH ₃], -1.75 [s 1H, H ₄ /5]
5	6.3 [d, 1 B, $J_{BH_{t}}$ 49, B6], -1.7 [d, 1 B, $J_{BH_{t}}$ 150, B5], -4.6 [dd, 1 B, $J_{BH_{t}}$ 154, $J_{BH_{\mu}}$ 48, B4],-48.8 [d, 1 B, $J_{BH_{t}}$ 177, B1]	5.94 [s, 1 H, C3H], 3.44 [s, 1 H, B5H], 3.14 [s, 3H, C2CH ₃ , 0.59 [s 3 H, B6CH ₃], -0.90 [s, 1 H, B1H], -1.56 [s 1H, $H_{\mu}5/6$], -1.99 [s 1H, $H_{\mu}4/5$]
6 ^d	8.8 [d, 1 B, J_{BH_1} 182, B3], 7.2 [d, 1 B, J_{BH_1} 170 °, B6], 4.1 [d, 1 B, J_{BH_1} 170 °, B5], -10.0 [s, 1 B, B 1], -25.1 [d, 1 B, J_{BH_1} 176 °, B7]	
7	13.8 [s, 1 B, B3], 5.5 [d, 1 B, J_{BH_1} 150 °, B5], 2.0 [d, 1 B, J_{BH} 155 °, B6], -18.6 [d, 2 B, J_{BH} 175, B 1, B7]	5.18 [s, 1H, C4H], 4.00 [s, B5H, B6H], 2.08 [s, 3H, C2CH ₃], 0.92 [s, 3H, B3CH ₃], 0.23 [s, 2H, B1H, B7H]
10	-1.8 [d, 1 B, $J_{BH_{t}}$ 157, B5], -3.9 [dd, 1 B, $J_{BH_{t}}$ 155, $J_{BH_{\mu}}$ 55, B4], -4.4, [dd, 1B, $J_{BH_{t}}$ 154, $J_{BH_{\mu}}$ 56, B6], -47.4 [d, 1 B, $J_{BH_{t}}$, 178, B 1]	3.52 [s, 1H, B5H], 3.28 [s, 1 H, B4H], 3.25 [s, 1 H, B6H], 2.47 (dq, 1 H, ${}^{2}J_{HH}$]4, ${}^{e}3J_{HH}$ 7, ${}^{e}CH_{a}H_{b}$), 2.33 (dq, 1 H, ${}^{2}J_{HH}$ 14, ${}^{e}3J_{HH}$ 7, ${}^{e}CH_{a}H_{b}$), 2.33 (dq, 1 H, ${}^{2}J_{HH}$ 14, ${}^{e}3J_{HH}$ 7, ${}^{e}CH_{a}H_{b}$), 2.09 [s, 3 H, C3CH ₃], 1.21 (t, 3 H, ${}^{3}J_{HH}$ 7, ${}^{e}CH_{a}H_{b}CH_{3}$), -0.88 [s, 1 H, B1H], -2.16 [s 1H, H _µ 5/6], -2.17 [s 1H, H _µ 4/5]
11	-0.8 [d, 1 B, J_{BH_t} 165, B5], -3.9 [dd, 1 B, J_{BH_t} 152, $J_{BH_{\mu}}$ 50, B4], -3.9 [dd, 1 B, J_{BH_t} 155 °, $J_{BH_{\mu}}$ 50 °, B6], -39.4 [s, 1 B, B 1]	3.57 [s, 1H, B5H], 3.18 [s, 2 H, B4H, B6H], 2.35 (q ^f , 2, ${}^{3}J_{HH}7$, ^e $CH_{a}H_{b}$), 1.99 [s, 3H, C3CH ₃], 1.18 (t, 3 H, ${}^{3}J_{HH}7$, ^e $CH_{2}CH_{3}$) -0.64 [s, 3 H, B1CH ₃], -1.79 (s, 2 H, H _u)
13	11.3 [s, 1 B, B5], -4.8 [dd, 2 B, $J_{\rm BH_t}$ 145 °, $J_{\rm BH_{\mu}}$ 50 °, B4, B6], -46.2 [d, 1B, $J_{\rm BH_t}$ 179, B1]	3.11 [s, 2 H, B4H, B6H], 2.43 (q ^f , 2, H, ${}^{3}J_{HH}$ 7, ° C $H_{a}H_{b}$), 2.03 [s, 3H, C3CH ₃], 1.24 (t, 3 H, ${}^{3}J_{HH}$ 7, ° C $H_{2}CH_{3}$)-0.90 [s, 1 H, B1H], -1.54 (s, 2 H, H _u)
14	5.2 [d, 1 B, J_{BH_t} 45 °, B5], -3.1 [d, 1 B, J_{BH_t} 150 °, B5], - 6.3 [dd, 1 B, J_{BH_t} 155 °, $J_{BH_{\mu}}$ 50 °, B4], -42.2 [d, 1 B, J_{BH_t} 179, B 1]	3.29 [s, 1 H, B5H], 3.05 [s, 1 H, B4H], 2.40 (q ^f , 2, H, ${}^{3}J_{HH}7$, ^e $CH_{a}H_{b}$), 2.03 [s, 3H, C3CH ₃], 1.22 (t, 3 H, ${}^{3}J_{HH}7$, ^e $CH_{2}CH_{3}$), -0.90 [s, 1 H, B1H], -1.65 [s 1H, H _µ 5/6], -2.08 [s 1H, H _µ 4/5]

^a NMR data for 1, 3, 4 and 12 have been reported [2,3,16]. Limited NMR data for 8 and 9: -19.5 ppm (B 1,7) in the ¹¹B-NMR spectrum of 6.

- ^b 128 MHz; in CDC1₃ at -50° C (external reference BF₃·Et₂O = 0.00 ppm).
- ^c 400 MHz; in CDC1₃ at -50° C (SiMe₄ = 0.00 ppm)
- ^{d 1}H-NMR data for 6 not obtained
- ^e Values uncertain due to peak overlap or poorly resolved peaks

^f Apparent pattern.

 $C_2B_4H_5]^-$ and $[2,3-(PhCH_2)_2-2,3-C_2B_4H_5]^-$, respectively [24], to be fully assigned. Details are given below [25,26].

5. Summary and conclusions

The gas-phase reactions of 1-methylpentaborane with propyne and 2-pentyne have been found to give alkyl derivatives of *nido*-C₂B₄H₈ as the major volatile products. Characterisation of these species by detailed NMR techniques has shown that 2,4-Me₂-2,3-C₂B₄H₆ (**3**) (not **5**) is produced in the gas-phase reaction between HC=CH and B₄H₁₀, and that 2-Et-3,4-Me₂-2,3-C₂B₄H₅ (**12**) is produced in the MeC=CH/B₄H₁₀ reaction. In addition, the results presented here will aid identification of other 4-substituted *nido*-C₂B₄H₈ derivatives in the future. The study has also revealed that the reaction of 1-MeB₅H₈ with propyne at 230°C leads to the 'direct' preparation of *closo*-C₂B₅H₇ derivatives from alkyne and pentaborane, and that this occurs via a 2,3-C₂B₄H₈ intermediate. Thermolysis of the *nido*-carbahexaborane 2,4-Me₂-2,3-C₂B₄H₆ (3) is shown to produce predominantly closo-2,3-Me₂-2,4-C₂B₅H₅ (7) at 230-250°C.

Acknowledgements

We thank the Engineering and Physical Sciences Research Council for financial support (M.A.F.). The computational work was initiated and partly carried out at the University of Erlangen-Nürnberg.

References

- T. Onak, D. Marynick, P. Mattschei, G.B. Dunks, Inorg. Chem. 7 (1968) 1754.
- [2] M.A. Fox, R. Greatrex, J. Chem. Soc. Chem. Commun. (1995) 667.
- [3] M.A. Fox, R. Greatrex, A. Nikrahi, P.T. Brain, M.J. Picton, D.W.H. Rankin, H.E. Robertson, M. Bühl, L. Li, R.A. Beaudet, Inorg. Chem. 37 (1998) 2166.
- [4] C.L. Bramlett, R.N. Grimes, J. Am. Chem. Soc. 88 (1966) 4269.

- [5] R.N. Grimes, C.L. Bramlett, R.L. Vance, Inorg. Chem. 7 (1968) 1066.
- [6] R.N. Grimes, C.L. Bramlett, J. Am. Chem. Soc. 89 (1967) 2557.
- [7] M.A. Fox, R. Greatrex, A. Nikrahi, Chem. Commun. (1996) 175.
- [8] J.B. Leach, T. Onak, J. Magn. Reson. 4 (1971) 30.
- [9] For bibliography on application of the ab initio/IGLO or GIAO/NMR method see Ref. 17 in M. Diaz, J. Jaballas, D. Tran, H. Lee, J. Arias, T. Onak, Inorg. Chem. 35 (1996) 4536.
- [10] M. Bühl, P.v.R. Schleyer, J. Am. Chem. Soc. 114 (1992) 477.
- [11] T. Onak, F.J. Gerhart, Inorg. Chem. 1 (1962) 742.
- [12] (a) X.L.R. Fontaine, J.D. Kennedy, J. Chem. Soc. Dalton Trans. (1987) 1573. (b) X.L.R. Fontaine, J.D. Kennedy, M. McGrath, T.R. Spalding, Magn. Reson. Chem. 29 (1991) 711.
- [13] (a) J. Dobson, R. Schaeffer, Inorg. Chem. 9 (1970) 2183. (b)
 D.F. Shriver, M.A. Drezdzon, The Manipulation of Air-sensitive Compounds, second ed., Wiley-Interscience, New York, 1986, p. 193.
- [14] Gaussian 94, Revision E.2, M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T. Keith, G.A. Petersson, J.A. Montgomery, K. Raghavachari, M.A. Al-Laham, V.G. Zakrzewski, J.V. Ortiz, J.B. Foresman, J. Cioslowski, B.B. Stefanov, A. Nanayakkara, M. Challacombe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
- [15] T.P. Onak, H.L. Landesman, R.E. Williams, I. Shapiro, J. Phys. Chem. 63 (1959) 1533.

- [16] T. Onak, R.P. Drake, G.B. Dunks, Inorg. Chem. 3 (1964) 1686.
- [17] V.R. Miller, R.N. Grimes, Inorg. Chem. 11 (1972) 862.
- [18] J.W. Akitt, C.G. Savory, J. Magn. Reson. 17 (1975) 122.
- [19] T.L. Venable, W.C. Hutton, R.N. Grimes, J. Am. Chem. Soc. 106 (1984) 29.
- [20] I. Shapiro, C.D. Good, R.E. Williams, J. Am. Chem. Soc. 84 (1962) 3837.
- [21] M.A. Fox, R. Greatrex, J. Chem. Soc. Dalton Trans. (1994) 3197.
- [22] B. Oh, T. Onak, Inorg. Chem. 21 (1982) 3150.
- [23] (a) J.S. McAvoy, C.G. Savory, M.G.H. Wallbridge, J. Chem. Soc. (A) (1971) 3038.(b) A 1:3 mixture of the known derivatives, 3-Et-2-Me-2-CB₅H₇ and 4-Et-2-Me-2-C₂B₅H₇, was identified from B₅H₉ and MeC≡CMe.
- [24] J.H. Davis, Jr., R.N. Grimes, Inorg. Chem. 27 (1988) 4213.
- [25] Assigned ¹H-NMR data for 4-(PhCH₂)-2,3-Et₂-2,3-C₂B₄H₅; δ 7.2 (m, 5; ArH), 2.64 (s*, 2; CH_aH_bPh), 2.45 (q*, 2, ${}^{3}J_{HH} \sim 7$ Hz; C2CH_aH_b), 2.44 (dq, 1, ${}^{2}J_{HH} \sim 14$ Hz, ${}^{3}J_{HH} \sim 7$; C₂CH_aH_b), 2.31 (dq, 1, ${}^{2}J_{HH} \sim 14$ Hz, ${}^{3}J_{HH} \sim 7$; C2CH_aH_b), 1.21 (t, 3, ${}^{3}J_{HH} \sim 7$ Hz; C3CH₂CH₃), 1.06 (t, 3, ${}^{3}J_{HH} \sim 7$ Hz; C2CH₂CH₃), 0.79 (q, 1; B1H), 1.68 (s, 1; H_µ(4,5)), 2.13 (s, 1; H_µ(5,6)). *Apparent patterns of the non-equivalent methylene protons, B5H and B6H are assumed as quartets at ca. 3 ppm.
- [26] Assigned ¹H-NMR data for 2,3,4-(PhCH₂)₃-2,3-C₂B₄H₅; 7.13 (m, 15, ArH), 3.89 (s*, 2; C₃H_aH_b), 3.80 (dq, 1, ²J_{HH} ~ 14 Hz; C2CH_aH_b), 3.65 (d, 1, ²J_{HH} ~ 14 Hz; C2CH_aH_b), 2.63 (s*, 2; CH_aH_bPh), -0.6 (q, 1; B1H), -1.35 (s, 1; H_µ(4,5)), -2.05 (s, 1; H_µ(5,6)). *Apparent patterns of the non-equivalent methylene protons, B5H and B6H are assumed as quartets at ca. 3 ppm.